修饰蛋白组学 质谱技术流程(修饰蛋白组学)
大家好,我是小十,我来为大家解答以上问题。修饰蛋白组学 质谱技术流程,修饰蛋白组学很多人还不知道,现在让我们一起来看看吧!
1、这个概念最早是在1995年提出的,它在本质上指的是在大规模水平上研究蛋白质的特征,包括蛋白质的表达水平,翻译后的修饰,蛋白与蛋白相互作用等,由此获得蛋白质水平上的关于疾病发生,细胞代谢等过程的整体而全面的认识。
2、 目前,在蛋白质功能方面的研究是极其缺乏的。
3、大部分通过基因组测序而新发现的基因编码的蛋白质的功能都是未知的,而对那些已知功能的蛋白而言,它们的功能也大多是通过同源基因功能类推等方法推测出来的。
4、有人预测,人类基因组编码的蛋白至少有一半是功能未知的。
5、因此,在未来的几年内,随着至少30种生物的基因组测序工作的完成,人们研究的重点必将转到蛋白质功能方面,而蛋白质组的研究正可以完成这样的目标。
6、在蛋白质组的具体应用方面,蛋白质在疾病中的重要作用使得蛋白质组学在人类疾病的研究中有着极为重要的价值。
7、 疾病的产生可能仅仅是因为基因组中一个碱基对的变化,如β-血红蛋白第六位上的Glu变为Val就导致了镰刀型细胞贫血症的发生。
8、然而,对于大多数疾病来说,其疾病发生机制要复杂的多。
9、因此,对于疾病发生的分子机制的认识就需要一些能够解决这些复杂性的方法来完成。
10、而作为细胞中的活性大分子,蛋白质无疑是与疾病相关的主要分子,蛋白表达水平的改变是与疾病,药物作用或毒素作用直接相关的。
11、因此,基于蛋白质整体水平的蛋白质组学在人类疾病研究中无疑将发挥重要作用。
12、 现在,蛋白质组学在人类疾病中的应用已经在一些疾病如皮肤病,癌症,心脏病中广泛开展了,而这些研究则主要集中在这样几个方面:寻找和疾病相关的单个蛋白,整体研究某种疾病引起的蛋白表达或修饰的变化,利用蛋白质组寻找一些致病微生物引起的疾病的诊断标记和疫苗等。
13、下面,我们就将就蛋白质组学的基本技术和这些领域的应用作一些介绍。
14、 蛋白质组学研究的基本技术 对于蛋白质组学的研究来说,它的最基本的实验手段就是利用双向凝胶电泳(two-dimensional protein electrophoresis, 2DE),在整个 基因组水平上检测蛋白质表达的情况。
15、双向凝胶电泳首先利用等电点聚焦来分离不同等电点的蛋白,再利用SDS-PAGE来分离不同分子量的蛋白,其分辨率是非常高的。
16、微克级的蛋白质就可以被很好的分辨开了,如在微克级水平上,有人从一个蛋白混合物中最多分开了11200种蛋白质,数量是非常可观的。
17、因而,微克级的蛋白的双向凝胶电泳常被用来初步检测表达或修饰有变化的蛋白。
18、然后,同样的蛋白混合物样品可用于毫克级的2DE,这样,电泳图谱上的每一个多肽就可被纯化并进行下一步的分析,如质谱,末端或中间的氨基酸序列分析等。
19、 仅仅进行双向凝胶电泳显然是远远不够的,因为由双向电泳得到的蛋白质表达情况的变化并不能和具体的何种蛋白表达出了变化联系起来。
20、而一些如蛋白质印迹或凝集素亲和印迹等传统技术对于这方面的信息也帮助不大。
21、为了鉴定这些由电泳得来的蛋白,质谱(MS,mass spectrometry)被广泛应用在蛋白质组学中。
22、对于蛋白质的鉴定,有两种方法用的最为广泛,即MALDI-MS ( matrix-assisted laser desorption ionization)和ESI-MS (electrospray ionization)。
23、这两种方法各有自己的 适用范围,通常前者对于分析高分子量的蛋白更有效,而后者对于蛋 白的检测灵敏度更高,常可达到飞克级水平以下。
24、质谱可以用于蛋白质分析主要是因为它可以提供特定蛋白的不同方面的结构信息,如它可直接测定蛋白或多肽的分子量信息,也可用来获得一些蛋白质序列信息等。
25、同时,质谱也可通过多肽片段分子量的改变来得到一些关于糖型,磷酸化和其它翻译后修饰的数据。
26、因此,质谱对于蛋白质的鉴定是非常重要的,而它的进展也无疑会大大促进蛋白质组学的研究进展。
27、 单个的疾病相关蛋白的寻找 在疾病发生过程中,由于和疾病相关的遗传信息的变化常常会导致蛋白的种类和数量发生变化,而这些变化是可以被可以被高解析度的双向凝胶电泳所检测到的,这就是利用蛋白质组学寻找和鉴定疾病相关蛋白的依据。
28、 结肠癌的产生是一个包含了多个基因突变的多步过程,这其中包括抑癌基因的功能丧失,癌基因的活化等。
29、然而,肿瘤发生的具体机制仍不清楚。
30、对于这样一种涉及多种蛋白的疾病,人们已经开始利用蛋白质组学来分。
本文到此讲解完毕了,希望对大家有帮助。