生活问答

当前位置/ 首页/ 生活问答/ 正文

单位列向量的秩(单位列向量)

导读 大家好,我是小科,我来为大家解答以上问题。单位列向量的秩,单位列向量很多人还不知道,现在让我们一起来看看吧!三维单位列向量:e1{1,...

大家好,我是小科,我来为大家解答以上问题。单位列向量的秩,单位列向量很多人还不知道,现在让我们一起来看看吧!

三维单位列向量:e1{1,0,0},e2{0, 1, 0},e3 {0, 0 , 1}。向量e1,e2,e3 的转置为被称为3维单位列向量。

三维单位列向量:e1{1,0,0}, e2{0, 1, 0}, e3 {0, 0 , 1}。

向量e1,e2,e3 的转置为被称为3维单位列向量。

用[ ]括起来就表示一个三维列向量。

在线性代数中,列向量是一个 n×1 的矩阵,即矩阵由一个含有n个元素的列所组成:列向量的转置是一个行向量,反之亦然。所有的列向量的集合形成一个向量空间,它是所有行向量集合的对偶空间。

单位列向量,即向量的长度为1,其向量所有元素的平方和为1。

单位列向量,即向量的长度为1,其向量所有元素的平方和为1。例如,

X={0/1} 

就是一个单位列向量。

反之,若||x||=1,则X称为单位向量。

||X||表示n维向量X长度(或范数)。

扩展资料:

已知三维单位列向量求矩阵的秩:

m × n矩阵的秩最大为m和n中的较小者,表示为 min(m,n)。有尽可能大的秩的矩阵被称为有满秩;类似的,否则矩阵是秩不足(或称为“欠秩”)的。

设A是一组向量,定义A的极大无关组中向量的个数为A的秩。

定义1. 在m*n矩阵A中,任意决定k行和k列交叉点上的元素构成A的一个k阶子矩阵,此子矩阵的行列式,称为A的一个k阶子式。

定义2. A=(aij)m×n的不为零的子式的最大阶数称为矩阵A的秩,记作rA,或rankA或R(A)。

特别规定零矩阵的秩为零。

显然rA≤min(m,n) 易得:

若A中至少有一个r阶子式不等于零,且在r<min(m,n)时,A中所有的r+1阶子式全为零,则A的秩为r。

由定义直接可得n阶可逆矩阵的秩为n,通常又将可逆矩阵称为满秩矩阵, det(A)≠0;不满秩矩阵就是奇异矩阵,det(A)=0。

由行列式的性质1(1.5[4])知,矩阵A的转置AT的秩与A的秩是一样的。

引理 设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n。

定理 矩阵的行秩,列秩,秩都相等。

定理 初等变换不改变矩阵的秩。

定理 矩阵的乘积的秩Rab<=min{Ra,Rb}。

当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。

当r(A)<=n-1时,最高阶非零子式的阶数<=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零(等号成立时伴随阵必为非零)。

秩为2,r(aa的转置)=1,特征值为0,0,1。E-aa的转置矩阵的特征值为1,1,0。0的重数位1,1≥n-r(E-aa)所以r(E-aa)≥2,所以秩为2。

参考资料来源:百度百科-矩阵的秩

参考资料来源:百度百科-列向量

本文到此讲解完毕了,希望对大家有帮助。