欧拉角定义(欧拉角)
大家好,我是小科,我来为大家解答以上问题。欧拉角定义,欧拉角很多人还不知道,现在让我们一起来看看吧!
1、欧拉角广泛地被应用于经典力学中的刚体研究,与量子力学中的角动量研究。
2、在刚体的问题上,xyz坐标系是全局坐标系, XYZ 坐标系是局部坐标系。全局坐标系是不动的;而局部坐标系牢嵌于刚体内。关于动能的演算,通常用局部坐标系比较简易;因为,惯性张量不随时间而改变。如果将惯性张量(有九个分量,其中六个是独立的)对角线化,那么,会得到一组主轴,以及一个转动惯量(只有三个分量)。
3、在量子力学里, 详尽的描述SO(3)的形式,对于精准的演算,是非常重要的, 并且几乎所有研究都采用欧拉角为工具。在早期的量子力学研究,对于抽象群理论方法(称为Gruppenpest),物理学家与化学家仍旧持有极尖锐的反对态度的时候;对欧拉角的信赖,在基本理论研究来说,是必要的。 欧拉角的哈尔测度有一个简单的形式 ,通常在前面添上归一化因子π2 / 8。单位四元数,又称欧拉参数,提供另外一种方法来表述三维旋转。这与特殊酉群的描述是等价的。四元数方法用在大多数的演算会比较快捷,概念上比较容易理解,并能避免一些技术上的问题,如万向节锁(gimbal lock) 现象。因为这些原因,许多高速度三维图形程式制作都使用四元数。
本文到此讲解完毕了,希望对大家有帮助。