梅氏三角形骂人(梅氏三角形)
大家好,我是小十,我来为大家解答以上问题。梅氏三角形骂人,梅氏三角形很多人还不知道,现在让我们一起来看看吧!
梅涅劳斯(Menelaus)定理及其逆定理 梅涅劳斯(Menelaus)定理是由古希腊数学家梅涅劳斯首先证明的。他指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么AF/FB×BD/DC×CE/EA=1。 它的逆定理也成立:若有三点F、D、E分别在的边AB、BC、CA或其延长线上,且满足AF/FB×BD/DC×CE/EA=1,则F、D、E三点共线。利用这个逆定理,可以判断三点共线。
塞瓦定理推论 1.设E是△ABD内任意一点,AE、BE、DE分别交对边于C、G、F,则(BD/BC)*(CE/AE)*(GA/DG)=1
因为(BC/CD)*(DG/GA)*(AF/FB)=1,(塞瓦定理)所以 (BD/CD)*(CE/AE)*(AF/FB)=K(K为未知参数)且(BD/BC)*(CE/AE)*(GA/DG)=K(K为未知参数)又由梅涅劳斯定理得:(BD/CD)*(CE/AE)*(AF/FB)=1
所以(BD/BC)*(CE/AE)*(GA/DG)=1
2.塞瓦定理角元形式
AD,BE,CF交于一点的充分必要条件是:
(sin∠BAD/sin∠DAC)*(sin∠ACF/sin∠FCB)*(sin∠CBE/sin∠EBA)=1
由正弦定理及三角形面积公式易证
3.如图,对于圆周上顺次6点A,B,C,D,E,F,直线AD,BE,CF交于一点的充分必要条件是:
(AB/BC)*(CD/DE)*(EF/FA)=1
由塞瓦定理的角元形式,正弦定理及圆弦长与所对圆周角关系易证。
4.还能利用塞瓦定理证三角形三条高交于一点
设三边AB、BC、AC的垂足分别为D、E、F,根据塞瓦定理逆定 理,因为(AD:DB)*(BE:EC)*(CF:FA)=[(CD*ctgA)/[(CD*ctgB)]*[(AE*ctgB)/(AE*ctgC)]*[(BF*ctgC)/[(AE*ctgB)]=1,所以三条高CD、AE、BF交于一点。
谢谢
本文到此讲解完毕了,希望对大家有帮助。