什么是壳体结构(壳体结构)
大家好,我是小科,我来为大家解答以上问题。什么是壳体结构,壳体结构很多人还不知道,现在让我们一起来看看吧!
分类介绍
壳体结构的种类很多,多根据曲面的几何特性(即两个方向主曲率k1、k2的乘积K,称为高斯曲率)进行分类。当k1、k2同号时,K为正值,称正高斯曲率壳;当k1、k2异号时,K为负值,称负高斯曲率壳;当k1和k2中有一个为零时,K为零,称零高斯曲率壳;此外,尚有混合型曲率壳,即一个壳体内兼有正、负高斯曲率部分。
正高斯曲率壳体:有旋转成形的圆球面壳、椭球面壳、抛物面壳;有平移成形的椭圆抛物面扁壳,简称双曲扁壳。
负高斯曲率壳体:有旋转成形的双曲面壳;平移成形的双曲抛物面扭壳(包括单块扭壳和四块组合型扭壳)、双曲抛物面鞍形壳。
零高斯曲率壳体:有旋转成形的圆柱面壳、锥面壳;平移成形的开口圆柱面壳、椭圆柱面壳、抛物线柱面壳。
混合型曲率壳体:如膜型扁壳,也称无筋扁壳。这种壳在给定荷载作用下只产生均匀相等的薄膜压力,其大部分是正高斯曲率,只在角隅区是负高斯曲率。锯齿形变曲率双曲扁壳有时也属此类。
壳体按壳的厚度与最小曲率半径的比值,分为薄壳、中厚壳和厚壳。比值小于1/20的一般称薄壳,多用于房屋的屋盖;中厚壳及厚壳多用于地下结构、防护结构。
分类方法
计算要点 壳体的内力和变形计算比较复杂。为了简化,薄壳通常采用下述假设:材料是弹性的、均匀的,按弹性理论计算;壳体各点的位移比壳体厚度小得多,按照小挠度理论计算;壳体中面的法线在变形后仍为直线且垂直于中面;壳体垂直于中面方向的应力极小,可以忽略不计。这样就可以把三维的弹性理论问题简化成二维问题进行计算。在考虑丧失稳定的问题时,需要采用大挠度理论并求解非线性方程。厚壳结构的计算则不能忽略垂直于中面方向的应力变化,并按三维问题进行分析(见壳的计算)。
本文到此讲解完毕了,希望对大家有帮助。